Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity.
نویسندگان
چکیده
AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac energy substrate utilization and can be negatively regulated by Akt activation in the heart. It has recently been shown that Akt directly phosphorylates AMPKalpha(1)/alpha(2) on Ser(485/491) in vitro and prevents the AMPK kinase (AMPKK) LKB1 from phosphorylating AMPKalpha at its primary activation site, Thr(172) (S Horman, D Vertommen, R Heath, D Neumann, V Mouton, A Woods, U Schlattner, T Wallimann, D Carling, L Hue, and MH Rider. J Biol Chem 281: 5335-5340, 2006). To determine whether this is also the case in the cardiac myocyte, neonatal rat cardiac myocytes (NRCM) were infected with a recombinant adenovirus expressing a constitutively active mutant of Akt1 (myrAkt1) and then with or without adenoviruses expressing the active LKB1 complex. Expression of myrAkt1 blunted LKB1-induced phosphorylation of AMPKalpha at Thr(172), which resulted in a dramatic decrease in phosphorylation of AMPK's target, acetyl CoA-carboxylase. This decrease in AMPK activity was associated with prior Akt1-dependent phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491). To investigate whether Akt1 activation was also able to prevent other AMPKKs from phosphorylating AMPKalpha, we subjected NRCM to chemical hypoxia and noted a marked increase in phosphorylation of AMPKalpha at Thr(172), despite no change in LKB1 activity. NRCM expressing myrAkt1 demonstrated increased phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491) and a complete inhibition of chemical hypoxia-induced phosphorylation of AMPKalpha at Thr(172). Taken together, our data show that activation of Akt1 is able to prevent activation of cardiac AMPK by LKB1 and at least one other AMPKK, likely by prior phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491).
منابع مشابه
Expression of an active LKB1 complex in cardiac myocytes results in decreased protein synthesis associated with phenylephrine-induced hypertrophy.
AMP-activated protein kinase (AMPK) is a major metabolic regulator in the cardiac myocyte. Recently, LKB1 was identified as a kinase that regulates AMPK. Using immunoblot analysis, we confirmed high expression of LKB1 in isolated rat cardiac myocytes but show that, under basal conditions, LKB1 is primarily localized to the nucleus, where it is inactive. We examined the role of LKB1 in cardiac m...
متن کاملAMP-Activated Protein Kinase Phosphatidylinositol Ether Lipid Analogues Induce
Loss of function of the tumor suppressor LKB1 occurs in 30% to 50% of lung adenocarcinomas. Because LKB1 activates AMP-activated protein kinase (AMPK), which can negatively regulate mTOR, AMPK activation might be desirable for cancer therapy. However, no known compounds activate AMPK independently of LKB1 in vivo , and the usefulness of activating AMPK in LKB1-mutant cancers is unknown. Here, w...
متن کاملLKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins.
LKB1 plays the role of tumor suppressor, opposite to Akt, by negatively regulating mammalian target of rapamycin through the activation of AMP-activated protein kinase and TSC signaling. We have discovered a novel, potentially oncogenic role for LKB1 as a supporter of Akt-mediated phosphorylation of proapoptotic proteins. We found that Akt activation led to increased phosphorylation of FoxO3a a...
متن کاملIncreased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKα phosphorylation, in response to sprint exercise in severe acute hypoxia in humans.
AMP-activated protein kinase (AMPK) is a major mediator of the exercise response and a molecular target to improve insulin sensitivity. To determine if the anaerobic component of the exercise response, which is exaggerated when sprint is performed in severe acute hypoxia, influences sprint exercise-elicited Thr(172)-AMPKα phosphorylation, 10 volunteers performed a single 30-s sprint (Wingate te...
متن کامل2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition.
The compound 2-deoxyglucose (2-DG) enhances chemotherapy/radiotherapy in cell lines and animal models, prompting two phase I clinical trials with this cancer therapeutic. Although its mechanism of action has not been fully elucidated, it is hypothesized that the molecular basis of 2-DG activity is related to glycolysis inhibition. Here, we report that 2-DG induced Akt phosphorylation at Thr(308...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 290 6 شماره
صفحات -
تاریخ انتشار 2006